Computing the Tutte polynomial of lattice path matroids using determinantal circuits

نویسندگان

  • Jason Morton
  • Jacob W. Turner
چکیده

We give a quantum-inspired Opnq algorithm computing the Tutte polynomial of a lattice path matroid, where n is the size of the ground set of the matroid. Furthermore, this can be improved to Opnq arithmetic operations if we evaluate the Tutte polynomial on a given input, fixing the values of the variables. The best existing algorithm, found in 2004, was Opnq, and the problem has only been known to be polynomial time since 2003. Conceptually, our algorithm embeds the computation in a determinant using a recently demonstrated equivalence of categories useful for counting problems such as those that appear in simulating quantum systems. 2010 Mathematics Subject Classification. Primary: 05B35, 05A15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Transversal Matroids

1. Prefatory Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Several Perspectives on Transversal Matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Set systems, transversals, partial transversals, and Hall’s theorem . . . . . . . . 2 2.2. Transversal matroids via matrix encodings of set systems . . . . . ....

متن کامل

Lattice path matroids: enumerative aspects and Tutte polynomials

Fix two lattice paths P and Q from ð0; 0Þ to ðm; rÞ that use East and North steps with P never going above Q: We show that the lattice paths that go from ð0; 0Þ to ðm; rÞ and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroid...

متن کامل

ar X iv : m at h / 04 10 42 5 v 1 [ m at h . C O ] 1 9 O ct 2 00 4 MULTI - PATH MATROIDS

We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...

متن کامل

ar X iv : m at h . C O / 0 41 04 25 v 1 1 9 O ct 2 00 4 MULTI - PATH MATROIDS

We introduce the minor-closed, dual-closed class of multi-path matroids. We give a polynomial-time algorithm for computing the Tutte polynomial of a multi-path matroid, we describe their basis activities, and we prove some basic structural properties. Key elements of this work are two complementary perspectives we develop for these matroids: on the one hand, multi-path matroids are transversal ...

متن کامل

A Tutte polynomial inequality for lattice path matroids

Let M be a matroid without loops or coloops and let TM be its Tutte polynomial. In 1999 Merino and Welsh conjectured that max(TM (2, 0), TM (0, 2)) ≥ TM (1, 1) for graphic matroids. Ten years later, Conde and Merino proposed a multiplicative version of the conjecture which implies the original one. In this paper we show the validity of the multiplicative conjecture when M is a lattice path matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 598  شماره 

صفحات  -

تاریخ انتشار 2015